首页> 外文OA文献 >Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox
【2h】

Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox

机译:结合同步平均和高斯混合模型新颖性检测方案,用于基于振动的齿轮箱状态监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper investigates how Gaussian mixture models (GMMs) may be used to detect and trend fault induced vibration signal irregularities, such as those which might be indicative of the onset of gear damage. The negative log livelihood (NLL) of signal segments are computed and used as measure of the extent to which a signal segment deviates from a reference density distribution which represents the healthy gearbox. The NLL discrepancy signal is subsequently synchronous averaged so that an intuitive, yet sensitive and robust, representation may be obtained which offers insight into the nature and extent to which a gear is damaged. The methodology is applicable to nonlinear, non-stationary machine response signals.
机译:本文研究了如何使用高斯混合模型(GMM)来检测和趋势化由故障引起的振动信号不规则性,例如那些可能表示齿轮损坏的开始。计算信号段的负对数生计(NLL),并将其用作信号段偏离代表健康变速箱的参考密度分布的程度的度量。随后,对NLL差异信号进行同步平均,以便获得直观,灵敏且鲁棒的表示形式,从而可以深入了解齿轮损坏的性质和程度。该方法适用于非线性,非平稳的机器响应信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号